Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Pomiń baner

Nawigacja okruszkowa Nawigacja okruszkowa

Widok zawartości stron Widok zawartości stron

Praca dr. hab. Adama Kanigowskiego, prof. UJ przyjęta przez Annals of Mathematics

Praca dr. hab. Adama Kanigowskiego, prof. UJ przyjęta przez Annals of Mathematics

Praca pt. "Exponential mixing implies Bernoulli", której oprócz dr. hab. Adama Kanigowskiego, prof UJ współautorami są Dmitry Dolgopyat oraz Federico Rodriguez Hertz została przyjęta przez Annals of Mathemtics.

Jednym z kluczowych odkryć w układach dynamicznych w drugiej połowie ubiegłego stulecia jest fakt, że gładkie układy na rozmaitościach mogą zachowywać sie bardzo losowo (jak ciag rzutów monetą). Od tego czasu badanie zależności pomiędzy różnymi własnościami ergodycznymi i statystycznymi opisującymi losowość jest jednym z centralnych kierunków badań. W pracy Exponential mixing implies Bernoulli napisanej przez D. Dolgopyata, A. Kanigowskiego i F. Rodriguez-Hertza pokazane jest, że wykładnicza prędkość zanikania korelacji implikuje własność Bernoulliego (a więc w szczególności dodatnią entropię). Wynik ten w szczególności rozwiązał problem postawiony przez A. Katoka.

Przypominamy, że to już kolejna praca dr. hab. Adama Kanigowskiego przyjęta do publikacji w tym jednym z najbardziej prestiżowych czasopism matematycznych na świecie. O wcześniejszej informowaliśmy w lipcu 2023.

Polecamy również
Zmarła pani dr Zdzisława Dybiec

Zmarła pani dr Zdzisława Dybiec

Tomasz Kania i Przemysław Spurek laureatami konkursu SONATA BIS

Tomasz Kania i Przemysław Spurek laureatami konkursu SONATA BIS

Zmarł Paweł Tomasiewicz

Zmarł Paweł Tomasiewicz

Robert Szczelina laureatem Programu im. Bekkera

Robert Szczelina laureatem Programu im. Bekkera

Widok zawartości stron Widok zawartości stron